
THE DOCUMENT IS PROVIDED "AS IS",
WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS
BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION
WITH THE DOCUMENT OR THE USE OR
OTHER DEALINGS IN THE DOCUMENT. THE
AUTHOR MAKES NO REPRESENTATIONS
ABOUT THE SUITABILITY OF THIS
DOCUMENT FOR ANY PURPOSE

Page 1 of 34

Working document for the

Unofficial
Extended
Java
Coding

Guidelines

THE DOCUMENT IS PROVIDED "AS IS",
WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS
BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION
WITH THE DOCUMENT OR THE USE OR
OTHER DEALINGS IN THE DOCUMENT. THE
AUTHOR MAKES NO REPRESENTATIONS
ABOUT THE SUITABILITY OF THIS
DOCUMENT FOR ANY PURPOSE

Page 2 of 34

1. Table of Contents

1. Table of Contents ... 2

2. Document history ... 4
2.1. Revision History .. 4

3. Purpose and intended audience ... 5

4. Naming standards .. 6
4.1. Naming identifiers .. 6
4.2. Naming of common methods ... 6
4.3. When to use prefix methods by get..() or find…() 7
4.4. Interface naming convention .. 7
4.5. Naming interface implementations ... 7
4.6. Naming EJB-components .. 7
4.7. Value Objects (Transfer Objects / J2EE design pattern) 8
4.8. Naming DAO classes (for EJBQL / direct SQL database access) .. 8
4.9. DAO superstructure ... 8

5. Constants ... 10

6. Transaction control .. 11
6.1. When to use .. 11
6.2. Setting the transaction timeout and number of application server
execution threads .. 11

7. Making use of code style templates ... 12

8. Choosing package names .. 13

9. Javadoc ... 14
9.1. Active use of method deprecation .. 14
9.2. Document short and adequitely ... 14
9.3. Document once ... 15
9.4. Document API levels ... 15
9.5. Document homogeneous... 16

10. Error handling .. 17
10.1. Differentiate between business logic (data) exception and system
exception (ressources, database, middleware, communication,..).............. 18
10.2. Checked exceptions .. 18
10.3. Unchecked exceptions .. 20
10.4. Error codes and ResourceBundles .. 21
10.5. Logging errors ... 21
10.6. Nested exceptions ... 21

11. Internationalization ... 22

12. Logging .. 23

THE DOCUMENT IS PROVIDED "AS IS",
WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS
BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION
WITH THE DOCUMENT OR THE USE OR
OTHER DEALINGS IN THE DOCUMENT. THE
AUTHOR MAKES NO REPRESENTATIONS
ABOUT THE SUITABILITY OF THIS
DOCUMENT FOR ANY PURPOSE

Page 3 of 34

12.1. Logging strategy: defensive/offensive/levels 23
12.2. Commons and Log4J logging setup .. 23
12.3. Levels .. 24
12.4. Where to log .. 24

13. Versioning of source code .. 26

14. Validation ... 27
14.1. Data input validation at the front-end (Applet/Webstart client) 27
14.2. Server-side business logic validations (middle tier)...................... 28

15. Test strategy .. 29
15.1. Naming convention .. 29
15.2. How to setup a test case ... 29
15.3. JUnit test of API ... 31
15.4. Server test ... 32

16. Antipatterns .. 33
16.1. Don’t use design patters without justified cause 33
16.2. Don’t introduce additional abstraction unless functionality added 33
16.3. Declare class instance variables as private 33
16.4. Don’t use classes Vector and Enumerator 33
16.5. Use static initializers Initialization of instance variables 33
16.6. Declare variables as close as possible to where they are used ... 33
16.7. Responsibilities for the programmer .. 34
16.8. Don’t use deprecated methods .. 34

THE DOCUMENT IS PROVIDED "AS IS",
WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS
BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION
WITH THE DOCUMENT OR THE USE OR
OTHER DEALINGS IN THE DOCUMENT. THE
AUTHOR MAKES NO REPRESENTATIONS
ABOUT THE SUITABILITY OF THIS
DOCUMENT FOR ANY PURPOSE

Page 4 of 34

2. Document history

2.1. Revision History

Date Version Author Change
description/reason

2006-11-23 1.0 www.seniorkonsulent.dk Initial document
2007-07-09 1.1 www.seniorkonsulent.dk Minor updates

THE DOCUMENT IS PROVIDED "AS IS",
WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS
BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION
WITH THE DOCUMENT OR THE USE OR
OTHER DEALINGS IN THE DOCUMENT. THE
AUTHOR MAKES NO REPRESENTATIONS
ABOUT THE SUITABILITY OF THIS
DOCUMENT FOR ANY PURPOSE

Page 5 of 34

3. Purpose and intended audience

Sun Java source formatting guidelines are often to vague and not suitable for a
specific project. Consequently the need for more strict guidelines may arise. This
document intends to describe source formatting standards for for practical Java/J2EE
programming. Intension is to ensure, that developers in a project have guidelines to
follow, which obeys common rules while coding.

This document is a working document to be adapted to the special requirement for a
specific project. It is not intended to preach tamper-proof truth. It presents a structured
attempt to provide a solid foundation for debate. Common-knowledge regarding Java
syntax dictated by SUN Microsystems should not be found here. Such conventional
rules should be known by the developers in the project by default.

The document may be used as basis for:

- specification basics for outsourced programming projects
- unifying team efforts
- shaking up a project starting to head the wrong way

Following subjects will be adressed:

- project-specific standards
- package name
- javadoc documentation
- error handling in general
- exception handling
- data validation
- logging
- code test strategy (JUnit)

Considerations out-of-scope of this document are architectural matters like the choice
of design patterns on the EJB-tier, etc.

Developers, who need to be introduced to the basic syntax conventions for the Java
language, should read Standard Conventions from SUN Microsystems:
http://java.sun.com/docs/codeconv/

THE DOCUMENT IS PROVIDED "AS IS",
WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS
BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION
WITH THE DOCUMENT OR THE USE OR
OTHER DEALINGS IN THE DOCUMENT. THE
AUTHOR MAKES NO REPRESENTATIONS
ABOUT THE SUITABILITY OF THIS
DOCUMENT FOR ANY PURPOSE

Page 6 of 34

4. Naming standards

Currently present are the necessary standards for the various component types
(interfaces, classes, variables).

4.1. Naming identifiers

General naming standards will not be addressed in this document. Special conventions
applyying to internationalized projects:

- English literals are used.

- In general use long expressive names instead of short abbreviations. This does
not apply to identifiers used to support the programming language power (like
iterators, etc.) or the specific single-letter names i,j,k for indentifiers used in
short loops, where the meaning is obvious.

- Whenever an identifier should contain business related values, a name should
be selected from a standard terminology list, created for the purpose to
assemble alle business relevant terminology.

- Allowed characters in identifiers are alfanumeric characters (a..z, A..Z, 0..9).
Non-constant variable names should not use entirely capital letters.

- Identifiers for constants may use underscore (_) and can have their names
entirely specified with capital letters. Variables should not use this symbol.

4.2. Naming of common methods

It is a known fact that a number of method names are used repeatedly. Most known
are .get and .set methods for exchanging values between objects. But a number of
other method prototype definitions are commenly used:

- Finder methods: findBy…() or findAll(): Collection
- Create methods: add…(): void
- Read methods: get…()
- Write methods: set…(): void
- Update methods: update…(): void
- Delete methods: remove…(): void
- Question methods: is…():boolean

Avoid plentitude of alternatives: “get” or “search” instead of “find” – “insert”, “push”
or “put” instead of “add” - “delete” instead of “remove” – “find” could return an array
of objects instead of a Collection etc. Naming for method .findXXX should use XXX to
implicate what the Collection acturally contains. Whatever choice is made, it should
be strategic and applied throughout the code base.

THE DOCUMENT IS PROVIDED "AS IS",
WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS
BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION
WITH THE DOCUMENT OR THE USE OR
OTHER DEALINGS IN THE DOCUMENT. THE
AUTHOR MAKES NO REPRESENTATIONS
ABOUT THE SUITABILITY OF THIS
DOCUMENT FOR ANY PURPOSE

Page 7 of 34

Part of the program documentation is appropriately chosen method names. Where
good names are chosen, additional documentation are often not needed.

4.3. When to use prefix methods by get..() or find…()

In general methods should be prefixed get…() where:

- there is a corresponding set..() method
- the get- functions are faster and do less error-checking than the find- functions
- get methods returns a result within rather limited boundaries (fx. calculation

result)

Prefixing methods by find..() applies more rarely and in typical situations:

- where an actual search algorithm applies
- the method applies logic to fx. validate arguments and may throw a number of

“invalid-input” exceptions.

There are no strict guidelines to methods prefixing. But make sure that the naming
conventions are applied in the same way, everywhere. For enty beans, findBy..() is
often used to give a hint about, which arguments are essential for retrieving the result.

4.4. Interface naming convention

Interface classes have their names prefixed with ‘I’ in a similar way to C++ notation.

4.5. Naming interface implementations

Implementations of common interfaces should just have normal class names. It is
often seen but not good programming recommended practice to use suffix Impl after
the name of classes implementing an arbitrary interface.

4.6. Naming EJB-components

EJB-naming convention should follow rules:

- Stateless session beans:
Must have suffix SB. In addition, the home-interface/implementation class
must furthermore be suffixed by Home/Bean.

- Statefull session beans:
Must have suffix SSB + Home/Bean for home-interface/implementation class.

- Entity beans:
Entity beans with local/remote interfaces should be prefferred for optimal
performance.

Use suffixes local/localHome for local interface/local home-interface.

Don’t use special suffixes for remote interface except Home for the remote

THE DOCUMENT IS PROVIDED "AS IS",
WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS
BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION
WITH THE DOCUMENT OR THE USE OR
OTHER DEALINGS IN THE DOCUMENT. THE
AUTHOR MAKES NO REPRESENTATIONS
ABOUT THE SUITABILITY OF THIS
DOCUMENT FOR ANY PURPOSE

Page 8 of 34

home-interface.

Primary key classes must be suffixed PK.

- Message Driven beans:
Must be suffixed MDBean

Naming conventions are essential because ant buildfiles and possible XDoclet setup
may depend on the use of these structured rules for compiling and building the project
correctly.

4.7. Value Objects (Transfer Objects / J2EE design pattern)

This denotes the classes responsible for transferring data between different tiers –
which contains no business logic, is called Value Objects (VO).

The value object itself should be read-only and immutable.

All value objects in the project must inherit from a single class
dk.companyname.app.common.ValueObject and be suffixed VO.

A value object may contain additional value objects. If it contains multiple value
objects of the same type, they are stored in a List. Here the class
dk.companyname.app.common.ValueObjectList used. It may implement 4 methods
returning ArrayLists: presentList, addedList, removedList and originalList. one that
holds the present VO's, a second that holds all the VO's that was added to the first list,
third that holds the VO's that was removed from the first list, and last a fourth list that
holds the original list of VO's.

ValueObjectList may be used to provide some objects to the client, and the client can
add and remove these items form the list. If you want to provide a list of object to the
client, that the client can’t change, i.e add or remove use an Arraylist. Only use
ValueObjectList og ArrayList to store multiple objects in another object.

4.8. Naming DAO classes (for EJBQL / direct SQL database access)

The application will usually access the database through entity beans and only rarely
through direct SQL.

Class name suffix DAO (acronym for Data Access Object) indicates class, which
either access entity beans or perform direct SQL database access. Under no
circumstances should the application access the database otherwise than through a
DAO class.

4.9. DAO superstructure

THE DOCUMENT IS PROVIDED "AS IS",
WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS
BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION
WITH THE DOCUMENT OR THE USE OR
OTHER DEALINGS IN THE DOCUMENT. THE
AUTHOR MAKES NO REPRESENTATIONS
ABOUT THE SUITABILITY OF THIS
DOCUMENT FOR ANY PURPOSE

Page 9 of 34

Every DAO class should inherit from the class
dk.companyname.app.dao.AbstractDAO, which contains all common standard
functionality for execution SQL, closing result sets, etc.

AbstractDAO.java

General changes for handling the database through direct SQL will confine to this
class alone.

THE DOCUMENT IS PROVIDED "AS IS",
WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS
BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION
WITH THE DOCUMENT OR THE USE OR
OTHER DEALINGS IN THE DOCUMENT. THE
AUTHOR MAKES NO REPRESENTATIONS
ABOUT THE SUITABILITY OF THIS
DOCUMENT FOR ANY PURPOSE

Page 10 of 34

5. Constants

For constants there are usual strategies:

- declaring them as final static variables in a specific set of classes. The
variables are accessed either directly as public variables or through get..()-
methods

- declaring in resource bundles and accessing runtime by reading property files
on startup

- declaring in database along with stamdata and accessing runtime

If a database is already in use by the application, it does not make much sense to use
resource bundles additionally. Then it is usually better to keep most things in the
database. Still there may be constants, which is system-related more than business
related. These constants may be declared in specific constant classes under all
circumstances.

Hardcoding values is not an acceptable strategy and should not be allowed in the code
as a general rule. Values should be set from appropriate initialization code.

Usually constants will be used across packages and tiers. Subsequently two general
classes are used for constants

- dk.companyname.common.app.APPConstants: All constants used throughout
the business logic code.

- dk.companyname.common.app.DBConstants: All constants used in direct
database access (SQL). This includes all constants defining all tables &
columns used for DAO-access.

THE DOCUMENT IS PROVIDED "AS IS",
WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS
BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION
WITH THE DOCUMENT OR THE USE OR
OTHER DEALINGS IN THE DOCUMENT. THE
AUTHOR MAKES NO REPRESENTATIONS
ABOUT THE SUITABILITY OF THIS
DOCUMENT FOR ANY PURPOSE

Page 11 of 34

6. Transaction control

6.1. When to use

Methods should only be declared part of a transaction if rollback of actions (updates
in database) is actually required at some point in the process. Methods just retrieving
and displaying data from the database should not be under transactional control.

Excessive use of transactions may cause a large number of ‘hanging’ threads in the
application server, which may block for incoming requests.

6.2. Setting the transaction timeout and number of application server
execution threads

These two setting should always be optimized together. A transaction timeout should
be selected, which will:

- allow transactions to complete under most normal circumstances
- prevent the application server from ending up in a situation, where all

executable threads are blocked, while waiting for excessive long transaction
timeout

It is important to only apply transaction control for rather fast processes, which
terminates in a limited amount time. Otherwise the only outcome is to increase the
transaction timeout on the application server,

An application server thread count should be selected, which will:

- not introduce an excessive performance penalty due to the time overhead
required for thread management (of threads which are mostly idle)

- always leave threads free for the server to process necessary requests

Optimizing the variables is very much a trial-and-error process. But the transactional
flow should under all circumstances be designed to minimize transactional windows
to support low transactional timeout values.

THE DOCUMENT IS PROVIDED "AS IS",
WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS
BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION
WITH THE DOCUMENT OR THE USE OR
OTHER DEALINGS IN THE DOCUMENT. THE
AUTHOR MAKES NO REPRESENTATIONS
ABOUT THE SUITABILITY OF THIS
DOCUMENT FOR ANY PURPOSE

Page 12 of 34

7. Making use of code style templates

For most IDE tools such as Eclipse, there are plugins available, which will format
code according to a template. This will format the source code according to generic
tab-size, bracket positioning, etc

Two conditions must be met for successful use of such:

- definition of which code template to use (or creation of such one)
- the programmer making actual usage of the template, while coding

A code style template should be applied during the project to enforce discipline on
participants. Despite usage of a code style template, there are still many ways to
diverge in coding style, which the template cannot correct. In the end, code style
templates cannot change the actual code. A simple example is whether to use {} in
conditional sentences, where not required:

if(condition) { if(condition)
 do_unary_statement do_unary_statement;
}

Strictly the first set of {} are not required around a unary statement (such as setting
variable=value).

THE DOCUMENT IS PROVIDED "AS IS",
WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS
BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION
WITH THE DOCUMENT OR THE USE OR
OTHER DEALINGS IN THE DOCUMENT. THE
AUTHOR MAKES NO REPRESENTATIONS
ABOUT THE SUITABILITY OF THIS
DOCUMENT FOR ANY PURPOSE

Page 13 of 34

8. Choosing package names

As a minimum, different package names should be applied for code which is intended
to run on:

- client
- server
- exchanged by above two parts

In each case there should be a package hierachy separating the differently abstraction
layers. A description should explain the program separation in packages, used
throughout the project. Contents will be target for several changes/expansions during
the development fase.

Fx.

- dk.companyname.applicationname.client: classes implementing the client

- dk.companyname.applicationname.client.gui: classes for client GUI

- dk.companyname.applicationname.client.delegate: client façade to midtier

- dk.companyname.applicationname.webtier: whatever runs in a servlet engine

- dk.companyname.applicationname.midtier: whatever requires a container

- dk.companyname.applicationname.common: classes used across tiers

THE DOCUMENT IS PROVIDED "AS IS",
WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS
BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION
WITH THE DOCUMENT OR THE USE OR
OTHER DEALINGS IN THE DOCUMENT. THE
AUTHOR MAKES NO REPRESENTATIONS
ABOUT THE SUITABILITY OF THIS
DOCUMENT FOR ANY PURPOSE

Page 14 of 34

9. Javadoc

Javadoc is the term for comment notation used to cocument java programs, which
can be extracted by the standard tool javadoc.exe.

Javadoc serves purposes:

- programming logic documentation directly in source code

- api documentation by browsing extract by javadoc.exe

Javadoc documents closest to the code, but still we might expect some overlab
between the javadoc and the textual class descriptions in the UML design case tool.

More information on javadoc is found at http://java.sun.com/j2se/javadoc/

9.1. Active use of method deprecation

Occasionally methods or entire classes becomes ‘out-of-fashion’ for fx. business logic
reasons. Other methods or classes should be preferred. Then use the Javadoc tag

@deprecated

to signal deprecation of methods. And subsequently AVOID ANY FURTHER USE
OF THOSE METHODS.

9.2. Document short and adequitely

Javadoc should be written for:

- Package (one file with the given name ”package.html” for each package)

- Class

- Attribute (when the attribute semantics are complex)

- Method

- Contructor

Required - and sufficient – javadoc tags:

- @param

- @return

- @exception

http://java.sun.com/j2se/javadoc/

THE DOCUMENT IS PROVIDED "AS IS",
WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS
BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION
WITH THE DOCUMENT OR THE USE OR
OTHER DEALINGS IN THE DOCUMENT. THE
AUTHOR MAKES NO REPRESENTATIONS
ABOUT THE SUITABILITY OF THIS
DOCUMENT FOR ANY PURPOSE

Page 15 of 34

- @see

Other tags are really not necessary, assuming javadoc should mainly be an aid for the
programmer.

Don’t comment on set-/get-methods, which only performs standardized action of
assigning/returning values. Instead choose intuitive names for the methods

Antipattern for Javadoc to be avoided:

/**
 * Method setting the value for myAttrib
 * @param myAttrib String assigned to attribute myAttrib
 */
private void setMyAttrib1(String myAttrib) {
 this.myAttrib = myAttrib;
}

9.3. Document once

Don’t cut’n paste comments. Find the most appropriate place for the comments and
only place the comment there. Otherwise it will not be possible to update the many
identical blocks of documentation various places. Additional detailed documentation
in the interface implementation methods should not repete comments found in the
interface, but instead supplement specificly implementation technical details, etc. This
in turn implies that different implementation classes of the same interface should have
perceptible differences in the Javadoc.

Documentation of interface methods should not be transferred to the matching
implementation. Instead, a @see-tag in the implementation classes should reference
the interface methods, thereby providing easy navigation to the documentation.

Where implementation documentation appear unnecessary, use the @see-tag. Note
that several IDEs like Jbuilder may report warnings (for instance for the lack of
parameter tags) regarding the javadoc. This should not be considered a critical
problem and can be ignored.

9.4. Document API levels

- Classes
Justify the class - explain responsabilities – specify technical functional role –
avoid repeating UML design case tool information

- Methods and constructors:
Document only public methods/constructors. Expectations to input and output
for API. Techical functional role –preconditions for calling – which arguments
may be null or not - explain set of values returned – using tags @param and
@return. For returned Collection, Iterator etc. it is especially important to
explain, what classes are actually wrapped inside.

THE DOCUMENT IS PROVIDED "AS IS",
WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS
BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION
WITH THE DOCUMENT OR THE USE OR
OTHER DEALINGS IN THE DOCUMENT. THE
AUTHOR MAKES NO REPRESENTATIONS
ABOUT THE SUITABILITY OF THIS
DOCUMENT FOR ANY PURPOSE

Page 16 of 34

Explicitly state where input-object may be changed by a method – but in most
cases the method should prefereably create own copies of data – keeping
changes to a minimum. Explain thoroughly the reasons for exceptions through
the @exception tag.

9.5. Document homogeneous

Documentation style should be as homogeneous as possible, using the same business
terms and to the same degree of detail. This can can be problematic using Javadoc
from several programmers gathered in the same document. For Javadoc the guidelines
should be observed:

- inspect Javadoc conflicts in a widely used IDE’s such as Eclipse.

- where appropriate, use html-codes, italic <i></i>, etc. for accentuation.

- descriptions at all levels (class, method, …) are only included in the Javadoc
extract until the first blank line after the first sentence.

- specify datatype (simple or name of class/interface) on @param, @return or
@exception before the actual prose description. Add one (1) blank between
the variable name and the type for @param

THE DOCUMENT IS PROVIDED "AS IS",
WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS
BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION
WITH THE DOCUMENT OR THE USE OR
OTHER DEALINGS IN THE DOCUMENT. THE
AUTHOR MAKES NO REPRESENTATIONS
ABOUT THE SUITABILITY OF THIS
DOCUMENT FOR ANY PURPOSE

Page 17 of 34

10. Error handling

Define a hierarchy of exceptions and document use on each system layers.

It is important with a clear strategy for handling and propagation of exceptions thrown
from the various tiers to any boundary (typically the GUI) in the application. This
must be settled from the very beginning of the programming. Good practice is to
propagate errors using many business-logic specific exceptions rather than a few
generic exceptions containing plenty, different hardcoded messages.

Don’t apply empty ‘catch’ blocks: try {} catch(Throwable t) {}
Don’t use System.out.println printout directly to console. Use generic logging.

Try to report the contents of nearby important variables, for which tings might have
gone wrong. Most often, just knowledge that an error situation occurred is insufficient
– it is also necessary to provide a possiblity to find the reason. In troubleshooting
situations it’s necessary to be able to follow the program flow. Exception handling
should differentiate according to the following exception categories:

1. Checked exceptions, i.e. exceptions of type Exception (except
RuntimeException) or user defined (business) exceptions (typically raised by
validation errors, etc.).

2. Unchecked exceptions, i.e. exceptions of type RuntimeException (
NullPointerException, IndexOutOfBoundsException, etc.) or Error (like
VirtualMaschineError).

java.lang.Exception

java.lang.RuntimeException

Unchecked exceptions Checked exceptions

java.lang.Object

java.lang.Throwable

THE DOCUMENT IS PROVIDED "AS IS",
WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS
BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION
WITH THE DOCUMENT OR THE USE OR
OTHER DEALINGS IN THE DOCUMENT. THE
AUTHOR MAKES NO REPRESENTATIONS
ABOUT THE SUITABILITY OF THIS
DOCUMENT FOR ANY PURPOSE

Page 18 of 34

Antipattern of an often seen bad way of handling exceptions:

 try {
 … //something potentially throwing an exception
 } Catch(Exception e) { //not recommended practice
 System.out.println(“Unexpected Exception ” +
 e.getMessage());
 }

10.1. Differentiate between business logic (data) exception and system
exception (ressources, database, middleware, communication,..)

User defined exceptions must inherit from one of abstract classes:

- dkcompanyname.applicationname.common.exceptions.BusinessException
- dkcompanyname.applicationname.common.exceptions.SystemException.

The BusinessException may be extended, when it is an exception that is raised
because of some business rules (fx. data validation/business rule violation) – and the
SystemException may be extended when some kind of system error is raised (fx.
SQLException or IllegalAccessException).

10.2. Checked exceptions

Checked exceptions may handled differently:

- propogated unchanged through layers: thrown exceptions are propagated
untouched through the method call tree. Most appropriate where an exception
cannot be handled properly where it occurs. Fx. in a constructor method – or
generally in in the EJB-tier, where an exception need to be propagated to the
GUI, which in turn handles the received exception, by issuing an error
message to the user.

- caught and wrapped by a narrow family of exceptions: thrown exceptions are
caught and situation-describing text information is wrapped within another re-
thrown type of exception . Often the re-thrown exceptions are user defined
business exceptions (fx. XxxProcessflowException). The process of catching,
wrapping and re-throwing exceptions may happen at multiple levels.
Difference from before is that categorisation of exception is required in order
to re-throw the righ kind of business exception, which the upper receiving
layers will dispatch upon (e.g. GUI).

THE DOCUMENT IS PROVIDED "AS IS",
WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS
BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION
WITH THE DOCUMENT OR THE USE OR
OTHER DEALINGS IN THE DOCUMENT. THE
AUTHOR MAKES NO REPRESENTATIONS
ABOUT THE SUITABILITY OF THIS
DOCUMENT FOR ANY PURPOSE

Page 19 of 34

Figure above illustrates:

1. client invokes a service method (presumably on a webservice/stateless
session bean) on the middle-tier. On success, the method provides
expected return value/object.

2. On failure, the session bean method throws an exception, which need to be
propagated to the client for appropriate exception handling. The listed
exception types are:

dk. companyname.applicationname.common.exceptions.XXXValidatorRuleException

 - an example of a user defined exception inheriting from BusinessException
generated during business rule validation. Usually this exception will be
thrown unchanged to the client.

dk. companyname.common.exceptions.SystemException

- thrown to the client in case of unexpected technical errors occur during the
processing of the request. Such non-businesss-logic errors are often refferred
to as system exceptions (fx. SQLException, IOException), etc. Since the client
is unable to anticipate the often numerous resons for these errors, the
expteions are handled equally and just reported to the end user as a
“Technical error… (name of exception)… Report problem to system
administrator and try again later..”. Such exception and extended classes

Client

Session Facade

DAO

Entity Beans

1:
service
invocation

2:
XXXValidatorRuleException
SystemException
BusinessException

4:
EJBException
FinderException
SQLException

3:
EJBException
FinderException
SQLException

THE DOCUMENT IS PROVIDED "AS IS",
WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS
BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION
WITH THE DOCUMENT OR THE USE OR
OTHER DEALINGS IN THE DOCUMENT. THE
AUTHOR MAKES NO REPRESENTATIONS
ABOUT THE SUITABILITY OF THIS
DOCUMENT FOR ANY PURPOSE

Page 20 of 34

account for “unforseeable” situations with technical errors. Fx may an
argument (null) in a call to a session bean method not comply with acceptable
set-of-values (non-null). In that case the datacase constraints will cause a SQL
exception which may subsequently be caught and re-wrapped into an
appropriate SystemException.

Example of a method in the client, which performs a block of code potentially causing
various exceptions, which the client has to react to in different ways:

public void actionMethodXXX() {
 try {
 … //action causing exception of type ExceptionA,SystemException + misc. others
 …
 … //other action, causing exception of type ExceptionB, SystemException + others
 } catch(ExceptionA ea) { //Generate a warning message and…
 …
 } catch(SystemExceptionB eb) { //Generate error message “Contact system admin”..
 …
 } finally {
 …
 }
}

or alternatively:

public void actionMethodXXX() throws ExceptionA, SystemExceptionB {
 … //action causing exception of type ExceptionA,SystemException + misc. others
 …
 … //other action, causing exception of type ExceptionB, SystemException + others
}

In the first case, exceptions are handled – in the latter, the calling method is forced to
handle the exceptions by declaring them in the throws clause.

Fx. a checked exception would be:

java.lang.Object

 java.lang.Throwable

 java.lang.Exception

 java.io.IOException ß checked!!!

10.3. Unchecked exceptions

This type of exceptions should be specificly handled (normally not required by the
Java compiler). Exceptions of this type are normally caused by programmatic logic
errors – and are not accceptable in a production environment. It makes no sense to try
handling such unforseen and abnormal program flow (NullPointerException,
ArrayIndexOutOfBoundsException, etc.). However in the session beans that the client

http://java.sun.com/j2se/1.4.2/docs/api/java/lang/Object.html
http://java.sun.com/j2se/1.4.2/docs/api/java/lang/Throwable.html
http://java.sun.com/j2se/1.4.2/docs/api/java/lang/Exception.html

THE DOCUMENT IS PROVIDED "AS IS",
WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS
BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION
WITH THE DOCUMENT OR THE USE OR
OTHER DEALINGS IN THE DOCUMENT. THE
AUTHOR MAKES NO REPRESENTATIONS
ABOUT THE SUITABILITY OF THIS
DOCUMENT FOR ANY PURPOSE

Page 21 of 34

may call, all runtimeexception will be causght and and a new SystemException will
be thrown instead since the client obviously will be unable to handle fx. a
nullpointerException raised on the server.

Fx. an unchecked exception would be:

java.lang.Object

 java.lang.Throwable

 java.lang.Exception

 java.lang.RuntimeException ß anything extending this is unchecked

 java.lang.NullPointerException

10.4. Error codes and ResourceBundles

Don’t hardcode messages. Get them from ressourcebundles. Or at a very minimum
keep them in a centralized class, so they may later be more easily moved to a resource
bundle.

10.5. Logging errors

When an unhandled exception reach the executing JVM thread, a stacktrace will be
produced by default . A stracktrace may also be produced at any time using the
.printStackTrace() method on the java.lang.Throwable interface. This may be done
while catching system exceptions – before throwing an application specific
SystemException. See Logging for further datails.

10.6. Nested exceptions

Situations occur, where a thrown exception has to be converted to an exception on a
higher conceptual level, before being re-thrown to the invoking method. Described in
section for Checked exceptions . For all kinds of business exceptions the initially
thrown exception itself should not be embedded into the newly instantiated business
exception (actually the initial exception could be hidden in an attribute in the
exception, which is being re-thrown). However the text message from original
exception are often used for the new exception. Only deviation from this strategy is
SystemException, which is being instantiated with the original exception (see Where
to log).

http://java.sun.com/j2se/1.4.2/docs/api/java/lang/Object.html
http://java.sun.com/j2se/1.4.2/docs/api/java/lang/Throwable.html
http://java.sun.com/j2se/1.4.2/docs/api/java/lang/Exception.html
http://java.sun.com/j2se/1.4.2/docs/api/java/lang/RuntimeException.html

THE DOCUMENT IS PROVIDED "AS IS",
WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS
BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION
WITH THE DOCUMENT OR THE USE OR
OTHER DEALINGS IN THE DOCUMENT. THE
AUTHOR MAKES NO REPRESENTATIONS
ABOUT THE SUITABILITY OF THIS
DOCUMENT FOR ANY PURPOSE

Page 22 of 34

11. Internationalization

Internationalization is an area, where a decision should be made before starting the
project. Otherwise it can be rather resource demanding to introduce
internationalization later.

THE DOCUMENT IS PROVIDED "AS IS",
WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS
BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION
WITH THE DOCUMENT OR THE USE OR
OTHER DEALINGS IN THE DOCUMENT. THE
AUTHOR MAKES NO REPRESENTATIONS
ABOUT THE SUITABILITY OF THIS
DOCUMENT FOR ANY PURPOSE

Page 23 of 34

12. Logging

Logging may be applied for a number of reasons: runtime error, debug or for history
tracing needs.

- Error logging is used to record information about unexpected occurrences.

- Debug logging is used to record program or data flow information. Usually applied
in development and troubleshooting situations

- History logging is normally an integrated part of the application to gather
information about access to restricted resources or a traceable background for the
system state (transaction milestones).

In the first two situations, application logging may be done using CommonsLogging
or LOG4J (open source from the Jakarta-project). LOG4J may route logging trace to
output a target defined for the logger (console, file, database). Debug-tracing directly
to the console through System.out should be avoided. Deciding for a logging strategy
is essential for optimal benefit from logging. Error debug and (especially) historic
debug tracing should normally not have configurability to be switched off. Debug
logging should have that ability.

12.1. Logging strategy: defensive/offensive/levels

Defensive strategy (short and adequate output) is suitable for error logging. Only
results closely related to the error situation is recorded, because error situations may
occur in a huge number of variants. Accounting detailed for all will require too many
resources.

Offensive techniques (lots of debug output) are suitable debug logging, where it is
essential to validate functionality for a limited program segment and, where each little
piece of information may end up being significant.

History logging is implemented according to use case requirements using program
API.

Logging should be applied on each application level. This means independent debug
setup for each application. The server has its own serverlogs to record occurrences.

12.2. Commons and Log4J logging setup

The jar-file commons-logging.jar is used for commons logging.. For Log4J the jar-file
log4j-1.2.8.jar (or whatever version) is used. Either file may be packed into the root
of the application .ear file, and should be mentioned in the ejb-manifest.mf file that
will be used while making the jar file that contains the beans, this file is in vss under
config/plain.

THE DOCUMENT IS PROVIDED "AS IS",
WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS
BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION
WITH THE DOCUMENT OR THE USE OR
OTHER DEALINGS IN THE DOCUMENT. THE
AUTHOR MAKES NO REPRESENTATIONS
ABOUT THE SUITABILITY OF THIS
DOCUMENT FOR ANY PURPOSE

Page 24 of 34

A property file commons-logging.properties is needed to for comons logging and
log4j.properties for Log4J logging. When a property file is packed into a jar file
containing a bean, it will be available from its class path. A property file placed in the
domain directory of the weblogic server, i.e
weblogic/user_projects/ProofOfConceptDomain may have effect for all applications
throughout the server.

Classes performing logging information may look like:

import org.apache.commons.logging.Log;
import org.apache.commons.logging.LogFactory;

public class Foo { // class attribute defines logger for entire class:
…
private static final Log log = LogFactory.getLog(<ClassName>.class);
…
//actual logging by invocation of a method, which decides the level of logging:
log.debug("Text-to-be-logged");

Log4J may equally well be initialized programmaticly. This is described in
documentation.

General information regarding CommonsLogging is found at
http://jakarta.apache.org/commons/logging.html
General information regarding Log4J is found at
http://jakarta.apache.org/log4j/docs/index.html

12.3. Levels

CommonsLogging offers 5 levels of logging:

- info: Normally there is no differentiation in the use of the levels info or debug.
So just apply “debug” as below.

- debug: Used for normal debug.
- warning: Record indications of abnormal program flow, which should not

prevent the application from terminating correctly.
- error: Situations causing instantiation of SystemException should be prefixed

by logging at this level, see Where to log). The programmer will normally not
actively use this logging level, which is normally only activated after error
checks.

- fatal: Is NOT used

Standard debug syntax rules dictates that debug is configured so logging occurrences
usually contains a timestamp, system name (application name and code location) and
descriptive text explaining the situation.

12.4. Where to log

Error log-statement should be placed at lowest level in the program, where an
exception is being caught in a catch-statement (and most detailed information

http://jakarta.apache.org/log4j/docs/index.html
http://jakarta.apache.org/log4j/docs/index.html
http://jakarta.apache.org/log4j/docs/index.html

THE DOCUMENT IS PROVIDED "AS IS",
WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS
BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION
WITH THE DOCUMENT OR THE USE OR
OTHER DEALINGS IN THE DOCUMENT. THE
AUTHOR MAKES NO REPRESENTATIONS
ABOUT THE SUITABILITY OF THIS
DOCUMENT FOR ANY PURPOSE

Page 25 of 34

available about the error state). Logging is performed whenever a system runtime
exception is caught and transformed to (re-thrown as) a SystemException. The 3rd
argument to the SystemException constructor is the original thrown exception, which
is used in the automatic error logging in order to secure, that the logging can signal
exactly where the error appeared.

THE DOCUMENT IS PROVIDED "AS IS",
WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS
BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION
WITH THE DOCUMENT OR THE USE OR
OTHER DEALINGS IN THE DOCUMENT. THE
AUTHOR MAKES NO REPRESENTATIONS
ABOUT THE SUITABILITY OF THIS
DOCUMENT FOR ANY PURPOSE

Page 26 of 34

13. Versioning of source code

Version in may be put into the source code, so it comes out in the compiled binary.

All Java source files should contain following lines right after the class definition:

…
public static final String AUTHOR = "Author: ";
public static final String REVISION = "Revision: ";
…

This is useful, where confirmation of version of source is needed. Inspection could be
done using a Java Decompiler (fx. JAD) or directly by inspection of hex codes for
compiled code.

Manipulation of the REVISION string contents may be manipulated when retrieved
from CVS. Using appropriate notation, the string may be populated during the CVS
transfer process to reflect the current versioning level.

THE DOCUMENT IS PROVIDED "AS IS",
WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS
BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION
WITH THE DOCUMENT OR THE USE OR
OTHER DEALINGS IN THE DOCUMENT. THE
AUTHOR MAKES NO REPRESENTATIONS
ABOUT THE SUITABILITY OF THIS
DOCUMENT FOR ANY PURPOSE

Page 27 of 34

14. Validation

Validations may be performed on a number of different levels. Validation falls in
different categories:

- input validation (client)
- business logic rule validation (server)
- data integrity validation (database)

Input validations are often done on-the-fly during the typing in the client dialogs.
Access to database for value confirmation is mostly NOT required.

Business logic rule validation are performed AFTER invoking an action with fx. an
Ok/Save/Cancel/etc. button (default, usual business rules validation) and DOES
usually require access to database for calculation of complex values or compare.

Data integrity validation are usually done by introducing a number of constraints in
the database (non-null, uniqueness, referential constraints,..). But even though the
database enforces integrity validations, appropriate validation checks should be done
in the application code to avoid system SQL insert exceptions.

As a rule of thumb, the programmer should aim at invoking middle-tier as few times
as possible.

14.1. Data input validation at the front-end (Applet/Webstart client)

Generally:

- client should perform as much syntax validation as possible

- input validation is done on “document-level”, i.e. data is only being validated,
when the user signals end of input submission by applying Ok/Save/Cancel/etc.

Only if stated in use case should immediate validation be applied, for instance by
performing some cross-checking right after the user tabs change focus between input
fields.

Validation may be simplified or become unnecessary with use of appropriate GUI
objects, which puts restrictions on input (radio-button choice selector, drop-down
lists/combo-boxes with pre-populated values.

Values required from the server while validation should be obtained through a unit
operation if possible to minimize communication with the server. The data should be
available when opening the user dialog.

THE DOCUMENT IS PROVIDED "AS IS",
WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS
BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION
WITH THE DOCUMENT OR THE USE OR
OTHER DEALINGS IN THE DOCUMENT. THE
AUTHOR MAKES NO REPRESENTATIONS
ABOUT THE SUITABILITY OF THIS
DOCUMENT FOR ANY PURPOSE

Page 28 of 34

14.2. Server-side business logic validations (middle tier)

Do not duplicate validations performed on the front-end.

Also the business logic validation should be centralized. They should be performed at
a programmatic level, where it is possible to retrieve values from the database.
Checks should not be scattered throughout all layers or pieces of source code, so it
becomes unclear, what validations are actually performed.

THE DOCUMENT IS PROVIDED "AS IS",
WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS
BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION
WITH THE DOCUMENT OR THE USE OR
OTHER DEALINGS IN THE DOCUMENT. THE
AUTHOR MAKES NO REPRESENTATIONS
ABOUT THE SUITABILITY OF THIS
DOCUMENT FOR ANY PURPOSE

Page 29 of 34

15. Test strategy

When changes are introduced into a system, it should be possible to tell if the system
continues to work without unexpected side effects. Unit tests provides facility to
accomplish this objective. There are basic types of unit tests:

- server-independent (stub) tests (API test, does not require a running server)
- server tests (unit tests, which requires server running and access to database)

Both types of tests may be implemented with the same testing framework (fx. JUnit).

JUnit is a framework, where tests are incorporates into the code at the same time as
functional logic is implemented. In JUnit, each testcase is represented by a class with
a number of methods where the declarative name starts with “test…”, A testcase is
performed by executing all methods with such name signature. When one of the
method in the business class encounters an error, this may be reported by JUnit during
the test run. JUnit allows functional tests of al parts of the application at all times.

Running unit test should be done each time before source code is committed to the
versioning system. Server-independent unit tests may be run in extension of the
compile process.

Next time someone asks you for help debugging, help them write a test…

15.1. Naming convention

Test class names should have as prefix the same name as the class they test. But test
classes should also have “Test” as suffix. Fx. for a class named FooClass the
appropriate naming for a test class should be FooClassTest.

Test class package name should

- more or less mirror the package for class to test
- contain the section ´.test.´ somewhere in the package name
- reflect, if the unit test is a test of the client or server functionality
- separate server-independent tests and server tests.

15.2. How to setup a test case

The full standard documentation for JUnit is available at
http://www.junit.org/index.htm
The fastest way to be introduced to JUnit is by use/writing examples. Assume that a
test case has to be written for the class

dk.companyname.app.midtier.FooClass:
package dk.companyname.app.midtier;

public class FooClass {

http://www.junit.org/index.htm

THE DOCUMENT IS PROVIDED "AS IS",
WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS
BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION
WITH THE DOCUMENT OR THE USE OR
OTHER DEALINGS IN THE DOCUMENT. THE
AUTHOR MAKES NO REPRESENTATIONS
ABOUT THE SUITABILITY OF THIS
DOCUMENT FOR ANY PURPOSE

Page 30 of 34

 …
 public int calculateSomething(int arg1, String arg2) {
 …
 return result;
 }
 …
}

To test the method calculateSomething, a test class FooClassTest is written. It must
inherit from junit.framework.TestCase:

package dk.companyname.app.midter;
import junit.framework.*;

public class FooClassTest extends TestCase {
 protected void setUp() {
 //I assertions/assignments may be applied here if any state
 //is reqired before subsequent test methods are run
 }

 protected void tearDown() {
 //Applied after test case termination. Disables resources (objects), from
 //the ‘setup’ method. Fx. Database connection
 }
 …
 //All methods with naming prefix “test” are automatically run by the JUnit
 //framework. Methods should have NO arguments or return value (void)
 public void testFooClass1() {
 FooClass fc = new FooClass();
 Double result = fc.calculateSomething(5,“DATA”);
 assertEquals(25, result);
 }
 public void testFooClass2() {
 FooClass fc = new FooClass();
 Double result = fc.calculateSomething(16,“ MORE_DATA”);
 assertEquals(4, result);
 }
 …
}

All test classes in a package should be referenced from one test class inheriting from
To every test class in a package a gathering test class named AllTests is written:

package dk.companyname.app.midtier;

import junit.framework.*;
public class TestAll {

public static Test suite()
 TestSuite suite = new TestSuite();
 suite.addTestSuite(dk.companyname.app.midtier.test.FooClassTest.class);
 suite.addTestSuite(dk. companyname.app.midtier.test.AnotherClassTest.class);
 …
 return suite;
}

public static void main(String[] args) {
 junit.textui.TestRunner.run(suite());
}

THE DOCUMENT IS PROVIDED "AS IS",
WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS
BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION
WITH THE DOCUMENT OR THE USE OR
OTHER DEALINGS IN THE DOCUMENT. THE
AUTHOR MAKES NO REPRESENTATIONS
ABOUT THE SUITABILITY OF THIS
DOCUMENT FOR ANY PURPOSE

Page 31 of 34

}

To run test from command-line

java TestAll

To run test case using textual interface:

java junit.textui.TestRunner FooClassTest

To run test case using JUnit graphical interface (showing a swing window with green
progress bar if all test passedand red progress bar if any failed):

java junit.swingui.TestRunner FooClassTest

The test suite may be run accordingly:

java junit.swingui.TestRunner TestAll

The sequence of events starts by running the main method in the TestAll class. Notice
that the static main method is implicitly implemented in the superclass TestCase.
JUnit will automatically run method .setUp in FooClassTest and subsequently run all
void argument methods in this class, which have method names prefixed by test.
Methods are run in no guarantied order. Meanwhile the results generated by all assert-
methods are being displayed. Finally after having executed alt test methods in
FooClassTest, the method teardown is being run.

15.3. JUnit test of API

APIs on each logical level should be unit tested. This includes:

- Business delegate API in GUI

- Session bean API

- Entity bean API

- DAO API

- Validator classes

- Security system API

- Central utility classes (performing business logic calculations)

According to each Java package in your application, define a corresponding TestSuite
class that contains all the tests for validating the code in the package.

THE DOCUMENT IS PROVIDED "AS IS",
WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS
BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION
WITH THE DOCUMENT OR THE USE OR
OTHER DEALINGS IN THE DOCUMENT. THE
AUTHOR MAKES NO REPRESENTATIONS
ABOUT THE SUITABILITY OF THIS
DOCUMENT FOR ANY PURPOSE

Page 32 of 34

Define similar TestSuite classes that create higher-level and lower-level test suites in
the other packages (and sub-packages) of the application.

Ensure your build process includes compilation of all tests. This should ensure your
tests are always up-to-date with the latest code and keeps the tests fresh.

Test cases should not cover trivial set/get-methods or initialization of classes with a
no-function void constructor. There are no finite guidelines for writing adequate unit
testing. But as a general rule is that everything, which:

- looks like an API
- is reused multiple places

is a possible candidate for unit testing. The more a class is reused, the more detailed
the test should be.

(Server) tests may be controlled by a small jsp web-application, where a button may
be used to trigger all the test cases. See Server test for further description.

15.4. Server test

Server tests are unit tests, which require a running server container.

Server testing may depend on a specific setup of data in the database. The
circumstances for setting up test data should be well documented beyond just a SQL
script.

THE DOCUMENT IS PROVIDED "AS IS",
WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS
BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION
WITH THE DOCUMENT OR THE USE OR
OTHER DEALINGS IN THE DOCUMENT. THE
AUTHOR MAKES NO REPRESENTATIONS
ABOUT THE SUITABILITY OF THIS
DOCUMENT FOR ANY PURPOSE

Page 33 of 34

16. Antipatterns

Design patterns describe correct strategy for solving a problem. Antipatterns describes
on the other hand an often used (but incorrect) strategy for solving a problem.

16.1. Don’t use design patters without justified cause

Design patterns are intended to solve some common, general problems. Unless these
problems are present, using design patters will just bring anything positive. Most
design patterns are used without making a specific point out of their use. When the
need for a design pattern comes natural, there is not reason to explain, why and where
it is used.

16.2. Don’t introduce additional abstraction unless functionality added

Avoid encapsulate classes, which foreign package names into a self-written class.
Only do so if additional functionality is introduced somehow. Introducing a new
abstraction layer also introduces increases the risk that others will misuse of fail to use
the introduced API. Better to keep old API and make sure all programmers use the
same standards.

16.3. Declare class instance variables as private

When a variable is private, declare it private accordingly! Most instance variables are
not supposed to be accessed by other classes and should subsequently be declared
private. Accessing through set/get methods are standard programming practice..

16.4. Don’t use classes Vector and Enumerator

Classes Vector and Enumerator should never be used in the project. Always substitute
with classes ArrayList and Iterator.

16.5. Use static initializers Initialization of instance variables

Initialization of instance variable can be done directly when they are declared in the
class header. They could equally well be initialized in class constructor, servlet init()
method, enterprise bean ejbCreate() method, etc. but then it is more difficult to get a
quick overview of which values the variable may actually contain.

Initialization should only be performed in the constructor, if the initial value of the
variable depends on the context in which the class instantiation is being peformed.
Only initialize once.

16.6. Declare variables as close as possible to where they are used

Don’t declare one variable high above and use it in numerous contexts. Declare where
before use and try to restrict use to that place.

THE DOCUMENT IS PROVIDED "AS IS",
WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS
BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION
WITH THE DOCUMENT OR THE USE OR
OTHER DEALINGS IN THE DOCUMENT. THE
AUTHOR MAKES NO REPRESENTATIONS
ABOUT THE SUITABILITY OF THIS
DOCUMENT FOR ANY PURPOSE

Page 34 of 34

16.7. Responsibilities for the programmer

- When writing EJBQL/SQL, ensure that correct database constraints are in
place. If expecting one result and there is no uniqueness constraint, multiple
results could be returned and cause exceptions. Also ensure correct indexes are
available to allow sufficient performance. Indexes may be verified with the
database facility SHOW PLAN/EXPLAIN or through ‘Toad’ similar.

- Help the garbage collector by setting unused data structures to null. The
garbage collector should be able anyway to do necessary clean-up but helping
is common programming practice.

- Only do imports of classes actually used. There will be IDE facilities to note
where this is not the case.

- Work with the IDE and not against it. Take the time necessary to get familiar
with a new IDE.

16.8. Don’t use deprecated methods

The use of deprecated methods should not be allowed. Subsequently it is not
advisable to disable check for deprecated methods in the Compiler options settings for
the IDE in use.

	1. Table of Contents
	2. Document history
	2.1. Revision History

	3. Purpose and intended audience
	4. Naming standards
	4.1. Naming identifiers
	4.2. Naming of common methods
	4.3. When to use prefix methods by get..() or find…()
	4.4. Interface naming convention
	4.5. Naming interface implementations
	4.6. Naming EJB-components
	4.7. Value Objects (Transfer Objects / J2EE design pattern)
	4.8. Naming DAO classes (for EJBQL / direct SQL database access)
	4.9. DAO superstructure

	5. Constants
	6. Transaction control
	6.1. When to use
	6.2. Setting the transaction timeout and number of application server execution threads

	7. Making use of code style templates
	8. Choosing package names
	9. Javadoc
	9.1. Active use of method deprecation
	9.2. Document short and adequitely
	9.3. Document once
	9.4. Document API levels
	9.5. Document homogeneous

	10. Error handling
	10.1. Differentiate between business logic (data) exception and system exception (ressources, database, middleware, communicat
	10.2. Checked exceptions
	10.3. Unchecked exceptions
	10.4. Error codes and ResourceBundles
	10.5. Logging errors
	10.6. Nested exceptions

	11. Internationalization
	12. Logging
	12.1. Logging strategy: defensive/offensive/levels
	12.2. Commons and Log4J logging setup
	12.3. Levels
	12.4. Where to log

	13. Versioning of source code
	14. Validation
	14.1. Data input validation at the front-end (Applet/Webstart client)
	14.2. Server-side business logic validations (middle tier)

	15. Test strategy
	15.1. Naming convention
	15.2. How to setup a test case
	15.3. JUnit test of API
	15.4. Server test

	16. Antipatterns
	16.1. Don’t use design patters without justified cause
	16.2. Don’t introduce additional abstraction unless functionality added
	16.3. Declare class instance variables as private
	16.4. Don’t use classes Vector and Enumerator
	16.5. Use static initializers Initialization of instance variables
	16.6. Declare variables as close as possible to where they are used
	16.7. Responsibilities for the programmer
	16.8. Don’t use deprecated methods

